Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.

Identifieur interne : 002D10 ( Main/Exploration ); précédent : 002D09; suivant : 002D11

Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.

Auteurs : Karl Ravet [États-Unis] ; Forest L. Danford ; Alysha Dihle ; Marco Pittarello ; Marinus Pilon

Source :

RBID : pubmed:21941002

Descripteurs français

English descriptors

Abstract

Plastocyanin, which requires copper (Cu) as a cofactor, is an electron carrier in the thylakoid lumen and essential for photoautotrophic growth of plants. The Cu microRNAs, which are expressed during Cu deprivation, down-regulate several transcripts that encode for Cu proteins. Since plastocyanin is not targeted by the Cu microRNAs, a cofactor economy model has been proposed in which plants prioritize Cu for use in photosynthetic electron transport. However, defects in photosynthesis are classic symptoms of Cu deprivation, and priorities in Cu cofactor delivery have not been determined experimentally. Using hydroponically grown Populus trichocarpa (clone Nisqually-1), we have established a physiological and molecular baseline for the response to Cu deficiency. An integrated analysis showed that Cu depletion strongly reduces the activity of several Cu proteins including plastocyanin, and consequently, photosynthesis and growth are decreased. Whereas plastocyanin mRNA levels were only mildly affected by Cu depletion, this treatment strongly affected the expression of other Cu proteins via Cu microRNA-mediated transcript down-regulation. Polyphenol oxidase was newly identified as Cu regulated and targeted by a novel Cu microRNA, miR1444. Importantly, a spatiotemporal analysis after Cu resupply to previously depleted plants revealed that this micronutrient is preferentially allocated to developing photosynthetic tissues. Plastocyanin and photosynthetic electron transport efficiency were the first to recover after Cu addition, whereas recovery of the other Cu-dependent activities was delayed. Our findings lend new support to the hypothesis that the Cu microRNAs serve to mediate a prioritization of Cu cofactor use. These studies also highlight poplar as an alternative sequenced model for spatiotemporal analyses of nutritional homeostasis.

DOI: 10.1104/pp.111.183350
PubMed: 21941002
PubMed Central: PMC3252168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.</title>
<author>
<name sortKey="Ravet, Karl" sort="Ravet, Karl" uniqKey="Ravet K" first="Karl" last="Ravet">Karl Ravet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Colorado State University, Fort Collins, Colorado 80523, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Colorado State University, Fort Collins, Colorado 80523</wicri:regionArea>
<wicri:noRegion>Colorado 80523</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Danford, Forest L" sort="Danford, Forest L" uniqKey="Danford F" first="Forest L" last="Danford">Forest L. Danford</name>
</author>
<author>
<name sortKey="Dihle, Alysha" sort="Dihle, Alysha" uniqKey="Dihle A" first="Alysha" last="Dihle">Alysha Dihle</name>
</author>
<author>
<name sortKey="Pittarello, Marco" sort="Pittarello, Marco" uniqKey="Pittarello M" first="Marco" last="Pittarello">Marco Pittarello</name>
</author>
<author>
<name sortKey="Pilon, Marinus" sort="Pilon, Marinus" uniqKey="Pilon M" first="Marinus" last="Pilon">Marinus Pilon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21941002</idno>
<idno type="pmid">21941002</idno>
<idno type="doi">10.1104/pp.111.183350</idno>
<idno type="pmc">PMC3252168</idno>
<idno type="wicri:Area/Main/Corpus">002C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C86</idno>
<idno type="wicri:Area/Main/Curation">002C86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C86</idno>
<idno type="wicri:Area/Main/Exploration">002C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.</title>
<author>
<name sortKey="Ravet, Karl" sort="Ravet, Karl" uniqKey="Ravet K" first="Karl" last="Ravet">Karl Ravet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biology Department, Colorado State University, Fort Collins, Colorado 80523, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Colorado State University, Fort Collins, Colorado 80523</wicri:regionArea>
<wicri:noRegion>Colorado 80523</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Danford, Forest L" sort="Danford, Forest L" uniqKey="Danford F" first="Forest L" last="Danford">Forest L. Danford</name>
</author>
<author>
<name sortKey="Dihle, Alysha" sort="Dihle, Alysha" uniqKey="Dihle A" first="Alysha" last="Dihle">Alysha Dihle</name>
</author>
<author>
<name sortKey="Pittarello, Marco" sort="Pittarello, Marco" uniqKey="Pittarello M" first="Marco" last="Pittarello">Marco Pittarello</name>
</author>
<author>
<name sortKey="Pilon, Marinus" sort="Pilon, Marinus" uniqKey="Pilon M" first="Marinus" last="Pilon">Marinus Pilon</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroplasts (drug effects)</term>
<term>Chloroplasts (metabolism)</term>
<term>Copper (deficiency)</term>
<term>Copper (metabolism)</term>
<term>Copper (pharmacology)</term>
<term>Cytosol (drug effects)</term>
<term>Cytosol (metabolism)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Homeostasis (drug effects)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plastocyanin (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chloroplastes (effets des médicaments et des substances chimiques)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Cuivre (déficit)</term>
<term>Cuivre (métabolisme)</term>
<term>Cuivre (pharmacologie)</term>
<term>Cytosol (effets des médicaments et des substances chimiques)</term>
<term>Cytosol (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Homéostasie (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Plastocyanine (métabolisme)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Copper</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Chloroplasts</term>
<term>Cytosol</term>
<term>Gene Expression Regulation, Plant</term>
<term>Homeostasis</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Cuivre</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Chloroplastes</term>
<term>Cytosol</term>
<term>Feuilles de plante</term>
<term>Homéostasie</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Copper</term>
<term>Cytosol</term>
<term>MicroRNAs</term>
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Plastocyanin</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
<term>Cuivre</term>
<term>Cytosol</term>
<term>Feuilles de plante</term>
<term>Plastocyanine</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cuivre</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Copper</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plastocyanin, which requires copper (Cu) as a cofactor, is an electron carrier in the thylakoid lumen and essential for photoautotrophic growth of plants. The Cu microRNAs, which are expressed during Cu deprivation, down-regulate several transcripts that encode for Cu proteins. Since plastocyanin is not targeted by the Cu microRNAs, a cofactor economy model has been proposed in which plants prioritize Cu for use in photosynthetic electron transport. However, defects in photosynthesis are classic symptoms of Cu deprivation, and priorities in Cu cofactor delivery have not been determined experimentally. Using hydroponically grown Populus trichocarpa (clone Nisqually-1), we have established a physiological and molecular baseline for the response to Cu deficiency. An integrated analysis showed that Cu depletion strongly reduces the activity of several Cu proteins including plastocyanin, and consequently, photosynthesis and growth are decreased. Whereas plastocyanin mRNA levels were only mildly affected by Cu depletion, this treatment strongly affected the expression of other Cu proteins via Cu microRNA-mediated transcript down-regulation. Polyphenol oxidase was newly identified as Cu regulated and targeted by a novel Cu microRNA, miR1444. Importantly, a spatiotemporal analysis after Cu resupply to previously depleted plants revealed that this micronutrient is preferentially allocated to developing photosynthetic tissues. Plastocyanin and photosynthetic electron transport efficiency were the first to recover after Cu addition, whereas recovery of the other Cu-dependent activities was delayed. Our findings lend new support to the hypothesis that the Cu microRNAs serve to mediate a prioritization of Cu cofactor use. These studies also highlight poplar as an alternative sequenced model for spatiotemporal analyses of nutritional homeostasis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21941002</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>1300-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.111.183350</ELocationID>
<Abstract>
<AbstractText>Plastocyanin, which requires copper (Cu) as a cofactor, is an electron carrier in the thylakoid lumen and essential for photoautotrophic growth of plants. The Cu microRNAs, which are expressed during Cu deprivation, down-regulate several transcripts that encode for Cu proteins. Since plastocyanin is not targeted by the Cu microRNAs, a cofactor economy model has been proposed in which plants prioritize Cu for use in photosynthetic electron transport. However, defects in photosynthesis are classic symptoms of Cu deprivation, and priorities in Cu cofactor delivery have not been determined experimentally. Using hydroponically grown Populus trichocarpa (clone Nisqually-1), we have established a physiological and molecular baseline for the response to Cu deficiency. An integrated analysis showed that Cu depletion strongly reduces the activity of several Cu proteins including plastocyanin, and consequently, photosynthesis and growth are decreased. Whereas plastocyanin mRNA levels were only mildly affected by Cu depletion, this treatment strongly affected the expression of other Cu proteins via Cu microRNA-mediated transcript down-regulation. Polyphenol oxidase was newly identified as Cu regulated and targeted by a novel Cu microRNA, miR1444. Importantly, a spatiotemporal analysis after Cu resupply to previously depleted plants revealed that this micronutrient is preferentially allocated to developing photosynthetic tissues. Plastocyanin and photosynthetic electron transport efficiency were the first to recover after Cu addition, whereas recovery of the other Cu-dependent activities was delayed. Our findings lend new support to the hypothesis that the Cu microRNAs serve to mediate a prioritization of Cu cofactor use. These studies also highlight poplar as an alternative sequenced model for spatiotemporal analyses of nutritional homeostasis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ravet</LastName>
<ForeName>Karl</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Colorado State University, Fort Collins, Colorado 80523, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Danford</LastName>
<ForeName>Forest L</ForeName>
<Initials>FL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dihle</LastName>
<ForeName>Alysha</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pittarello</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pilon</LastName>
<ForeName>Marinus</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-09-9</RegistryNumber>
<NameOfSubstance UI="D010970">Plastocyanin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010970" MajorTopicYN="N">Plastocyanin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21941002</ArticleId>
<ArticleId IdType="pii">pp.111.183350</ArticleId>
<ArticleId IdType="doi">10.1104/pp.111.183350</ArticleId>
<ArticleId IdType="pmc">PMC3252168</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2008;177(2):389-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 3;424(6944):33-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 30;97(3):383-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 15;278(33):31286-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Apr 15;1748(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008 Jul;179(2):257-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19086173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Feb 12;283(5404):996-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9974395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):170-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1939 Apr;14(2):371-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1807(8):989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16352720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19402880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Oct 6;270(40):23504-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7559514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(6):848-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21281364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2007 Apr;158(1):46-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Jul;67(4):403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Jun;12(3):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12081-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18697928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 24;270(47):28479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;744:145-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21533691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Jul;1763(7):578-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 1;282(22):16369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 May 22;1326(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jun;15(6):1333-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15932-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):271-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Dec;4(6):933-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8281188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2003 May;36(5):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12755640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):1558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(21):2318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Nov;30(11):1366-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):15348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):861-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 8;277(10):8354-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Mar;229(4):767-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19084994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Mar;51(4):577-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Danford, Forest L" sort="Danford, Forest L" uniqKey="Danford F" first="Forest L" last="Danford">Forest L. Danford</name>
<name sortKey="Dihle, Alysha" sort="Dihle, Alysha" uniqKey="Dihle A" first="Alysha" last="Dihle">Alysha Dihle</name>
<name sortKey="Pilon, Marinus" sort="Pilon, Marinus" uniqKey="Pilon M" first="Marinus" last="Pilon">Marinus Pilon</name>
<name sortKey="Pittarello, Marco" sort="Pittarello, Marco" uniqKey="Pittarello M" first="Marco" last="Pittarello">Marco Pittarello</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ravet, Karl" sort="Ravet, Karl" uniqKey="Ravet K" first="Karl" last="Ravet">Karl Ravet</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21941002
   |texte=   Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21941002" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020